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After calling attention to the empirical and theoretical motivations for considering 
the hypothesis of a self-similar cosmos, the basic concepts and scaling rules of 
the Self-Similar Cosmological Model are presented. The results of a diverse set 
of 20 falsification tests are then shown to provide strong quantitative support 
for the uniqueness and broad applicability of the self-similar scale transformation 
equations, which successfully correlate physical parameters of atomic, stellar, 
and galactic scale systems. Possible implications of these results are discussed. 

...  the wise man looks into space 
and does not regard the small as too little, 

nor the great as too big, 
for he knows that there is no limit to dimensions. 

Lao-tse 

1. I N T R O D U C T I O N  

1.1. Goals  of  the Review 

The Self-Similar Cosmologica l  Model  (hereafter SSCM) is a heurist ic  
cosmological  model  that  has been  developed over the past 10 years in a 
series of  17 papers by the author  (Oldershaw, 1978-1987b, 1989a, b). The 
major  goal of  this review is to in t roduce  the SSCM, its 20 successful 
falsification tests, and  its major  predict ions to as large and  diverse an 

audience  of  scientists as possible.  Other  goals of  this review are a reasonably  
compact  summary  of the previous work on the SSCM and the ident i f icat ion 
and  clarification of various modif icat ions to the model  that  have occurred 
over the past  10 years. The remainder  of this section will be concerned  with 
the ques t ion  of  why one should  be interested in an unor thodox  self-similar 
model  of  the cosmos. Section 2 will in t roduce  the SSCM in its simplest  a nd  
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most general form and Section 3 will discuss the substantial amount of 
empirical evidence in favor of cosmological self-similarity. The sequel 
(Oldershaw, 1989c) to this paper will present a more detailed and technical 
discussion of the SSCM, including its major predictions, implications, and 
unresolved problems. 

1.2. Reasons for Considering a Self-Similar Cosmological Model 

1. The overwhelming majority of physicists currently think that the 
Big Bang cosmology (augmented by Inflation) and the Standard Model of 
particle physics (and subsequent unification theories) are unquestionably 
the right theories to guide us toward a fully unified understanding of nature; 
some even predict that all fundamental questions in physics will be solved 
in the near future by pursuing these theoretical paths. On the other hand, 
even supporters of these theories admit that their theoretical constructs are 
often untestable in a definitive way, that they have had trouble with most 
of the few falsification tests that have been identified, and that they have 
been unable to anticipate major new observational discoveries. This situation 
has been detailed elsewhere (Oldershaw, 1988) and will not be repeated 
here in full, but let us briefly consider the current state of affairs in cosmology. 
The Big Bang theory has always encountered serious theoretical problems, 
such as the flatness problem, the smoothness problem, and the horizon 
problem. These problems were "solved" by the ad hoc addition of an 
Inflationary episode at about 10 -35 sec after the Big Bang, but this solution 
leads to other equally serious problems. For example, the major prediction 
of the Inflated Big Bang theory is that the matter density of the universe 
equals the critical density (i.e., f~ -- 1), but this prediction has been contradic- 
ted by most observationally based estimates made to date (Rothman and 
Ellis, 1987). This theory also leads to potential conflicts between the predic- 
ted age of the universe and the estimated ages of its oldest constituents 
(Tayler, 1986). Moreover, the Inflation scenario is totally dependent upon 
the validity of the GUTs of particle physics, which are themselves beset by 
falsifications, arbitrariness, and testability problems (Pickering, 1984). Even 
more worrisome is the fact that the Big Bang theory failed to anticipate 
major empirical discoveries of recent years, such as the large-scale 
inhomogeneity in the distribution of matter, the large deviations from a 
smooth Hubble flow and, most importantly, the dark matter constituting 
more than 90% of the matter of the universe (Oldershaw, 1988). None of 
the variations on the Big Bang theme can provide a convincing explanation 
for the existence of galaxies, and the Hubble constant is uncertain by a 
factor of 2. In short, there is no justification for complacency with regard 
to our current state of knowledge in the field of cosmology (or particle 
physics). 



Self-Similar Cosmological Model 671 

2. For the past 10 years there has been a growing interest in the "fractal" 
properties of nature's geometry, largely due to the inspiration of Mandelbrot 
(1982). Fractal structures usually involve self-similarity, a form of invariance 
with respect to transformations in scale, in which small parts of a structure 
have geometrical properties that resemble the whole structure or larger parts 
of the structure. A Russian doll of the type that has a doll within a doll 
within a doll is a clearcut example of a self-similar structure. Mandelbrot 
and many others who have followed his lead have identified examples of 
self-similarity everywhere in nature: the clustering of  galaxies, stars, or 
atomic particles in a plasma; the branching of  trees, rivers, or circulatory 
systems; the cratering of astronomical bodies; the patterns of crystal growth; 
the motions of  turbulent fluids; the shapes of coastlines; the topology of 
mountain ranges; etc. In fact it is difficult to think of any realm of nature 
that does not include nontrivial examples of self-similarity. Although we 
do not as yet have a fully satisfactory explanation for why self-similarity 
should be so ubiquitous, we can unequivocally say that self-similarity is 
one of nature's fundamental design properties. It seems reasonable and 
natural to suspect that the solution to nature's biggest design problem, the 
design of the cosmos itself, might involve self-similarity. 

3. When a theory or paradigm is regarded as possessing beauty or 
elegance, terms often associated with Einstein's General Theory of  Relativity 
or Darwin's Theory of Evolution, for example, it is meant that the theory 
is conceptually simple and permits a pleasing unification of previously disjoint 
facts or ideas about nature. As I hope to demonstrate in this paper, the 
SSCM is conceptually very simple and proposes an unprecedented degree 
of  unification in the physics taking place on all scales of nature's hierarchy. 
Therefore, the SSCM has the potential for being a remarkably beautiful 
theory; one scientist (Sagan, 1980) has referred to the general notion of an 
infinite hierarchical cosmos of self-similar systems as "one of the most 
exquisite conjectures in science or religion." These potential attributes do 

�9 not constitute rigorous scientific support for the SSCM, but they do argue 
that it deserves serious, open-minded consideration. 

4. Another reason for exploring the possibility of a self-similar cosmos 
is that it avoids at least three major philosophical problems that have raised 
concerns about modern physics. First, the Big Bang theory proposes that 
the "initial state" of  the entire universe was that of a singularity with a 
radius of  zero (space and time did not exist yet), but with infinite pressure, 
temperature, and density. One might well ask how these latter quantities 
could have any meaning without space-time. Moreover, the hypothetical 
initiation of  the expansion of the universe from a singular state represents 
an unexplained, acausal event, a fact that is often downplayed in discussions 
of  the Big Bang theory, but which is obviously a theoretical drawback. The 
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SSCM avoids this problem by interpreting the large-scale expansion that 
we now observe as a local phenomenon taking place in one particular 
metagalactic system on the metagalactic scale of the hierarchy, much as 
stellar and galactic scale systems can explode or undergo rapid expansion 
from a more compact state. 

Second, the Big Bang theory makes the extremely suspect assumption 
that nature's hierarchy ends at about the scales where our observational 
capabilities end, and that we just happen to find ourselves in the vicinity 
of the center of that scale range. In the SSCM, on the other hand, there is 
no spectre of an anthropocentric truncation of nature's hierarchy, since it 
postulates that the hierarchy extends well beyond current observational 
limits, and is perhaps completely unbounded. 

Finally, modern physics has something of a split personality in that 
the physics of the microworld is hypothesized to be inherently different 
from the physics of the macroworld, with a somewhat fuzzy interface 
between these two realms wherein quantum microphysics rather mys- 
teriously metamorphoses into classical macrophysics. The SSCM hypothe- 
sizes that one set of physical laws holds good for all scales of nature's 
hierarchy. 

Therefore, the fact that the SSCM is not plagued by these three 
philosophical problems is another reason for giving it due consideration. 

5. The strongest argument for studying the concept of a self-similar 
cosmos is the considerable amount of quantitative evidence that supports 
it. In Section 3, 20 successful tests of the SSCM are discussed, and it is 
shown that the match between theoretical predictions and observational 
estimates far exceeds that expected by chance, or even that which could 
be achieved by numerical "fudging." Compare this degree of empirical 
support with that achieved by the highly regarded GUTs of particle physics 
(Oldershaw, 1988). 

For these five reasons, then, it would appear that the SSCM is worthy 
of serious attention in spite of its divergence from generally accepted 
cosmological assumptions. 

2. GENERAL DISCUSSION OF THE SELF-SIMILAR 
COSMOLOGICAL MODEL 

2.1. Heuristic Status 

It should be understood from the outset that the SSCM is still very 
much in the heuristic stages of development. That is, the SSCM and the 
properties of nature which led to the formation of its major hypotheses can 
be described in some detail and the self-similar scaling equations that are 
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the heart of  the model can be empirically derived and quantitatively tested, 
but the SSCM cannot as yet answer the basic questions of  why nature has 
a self-similar design and why the two dimensionless constants of the scaling 
equations have the particular values that are found empirically. The heuristic 
status of  the SSCM may be viewed as a shortcoming, but on the other hand 
it would seem to be unwise to risk stunting the development of the SSCM 
by encasing the promising heuristic core in a hastily constructed theoretical 
shell. 

Because the SSCM proposes a fundamentally different understanding 
of  nature, and because it would therefore significantly alter ideas in most 
branches of  theoretical physics, it is of considerable importance when 
studying this model that: (1) all previous theoretical constructs should be 
regarded as being open to question (a basic tenet of  science), and (2) that 
observational data should take primacy over theoretical assumptions or 
expectations when conflicts between these two occur. Unfortunately, at 
present this is not always the case (Pickering, 1984). 

2.2. Hierarchical Organization of the C o s m o s  

It is a self-evident fact that nature has a nested hierarchical organization, 
though this fact is often taken too much for granted. In our local planetary 
environment, for example, "elementary particles" combine to form atoms, 
which are the building blocks of molecules, which compose a vast array of  
macroscopic objects, which are collected into planets, moons, asteroids, 
and comets, which are components of the solar system. Taking a more 
cosmological perspective [in terms of the ubiquity (Oldershaw, 1985) of 
the building blocks, the breadth of the spatial domain under consideration, 
and the range of physical scale] it is known that electrons, atomic nuclei, 
and ions are the primary building blocks of  stars, which are thought to be 
the primary building blocks of galaxies, which are clustered into ever-larger 
aggregations until the limits of our observational abilities are approached. 

Considering well-defined classes of relatively stable objects that have 
mass, several major characteristics of the observable portion of the cosmo- 
logical hierarchy can be identified. The important question of the form of 
the dark matter has been discussed previously (Oldershaw, 1986a, d) and 
will be a primary topic of the sequel (Oldershaw, 1989c) to this paper. 

1. As just mentioned, the cosmological hierarchy has a nested organiz- 
ation wherein smaller objects are components of larger objects, which, in 
turn, are components of  even larger objects. 

2. If  we were to consider each class of objects as defining a "level" in 
nature's hierarchical arrangement, and order these levels in terms of increas- 
ing mass or range of  masses associated with each class, then the entire 
cosmological hierarchy involves a quasicontinuous (Oldershaw, 1985) set 
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of  levels ranging in mass from about 10 -27 g to at least 1045 g. Since building 
blocks at the levels of "elementary particles" appear to have very discrete 
masses, a hierarchy that includes them as major building blocks cannot be 
perfectly continuous in terms of the range of  masses of  its constituents. 

3. Although the overall mass range of  objects comprising the cosmo- 
logical hierarchy is quasicontinuous, a relatively few classes of objects 
account for large percentages of the mass of the observable universe, whereas 
objects at most other levels account for infinitesimal percentages of the 
observable mass (Oldershaw, 1986c). This means that the cosmological 
hierarchy is highly stratified (Mandelbrot, 1982), and this concept is best 
illustrated with some observational data. 

At least 99.9% of all observable mass is in the form of atomic and 
subatomic objects representing the relatively narrow mass range of roughly 
9 x 10 -28 g for the electron to about 9 • 10 -23 g for an iron atom. This mass 
range will tentatively be defined as the atomic scale of the cosmological 
hierarchy, though the choice of cutoffs is somewhat arbitary (Oldershaw, 
1985). Between the latter level and the levels at which stellar scale objects 
commence (about 10 29 g) only a cosmologically insignificant amount of 
total mass is in the form of  the objects comprising the levels of this interscale 
rang& But at least 90% of  the total observed mass is bound up in stellar 
and substellar objects ranging in mass from about 10-4M| to 8M| (M| is 
one solar mass, or about 2x  1033 g) ;  this mass range will be referred to as 
the stellar scale. Levels above the stellar scale do not involve appreciable 
percentages of the cosmological mass until one reaches levels designating 
galaxies, which range in mass from about 107M| to 10~2M| At  least 95% 
of  all observable matter is bound up in objects populating these levels, 
which are defined as the galactic scale of the cosmological hierarchy. These 
three scales, involving about 15 orders of magnitude in mass out of a total 
of  about 72 orders of  magnitude, dominate the observable portion of the 
cosmological hierarchy and in this sense the hierarchy can be regarded as 
quite stratified. Moreover, there is evidence of  further stratification within 
the atomic and stellar scales. In terms o f  abundances, approximately 99% 
of all atoms are accounted for by just two classes of  atomic systems: 
hydrogen (in neutral and H § states) and helium (in neutral, He § and He 2§ 
states). Likewise on the stellar scale just two classes of stars, M dwarf and 
K dwarf stars, account for about 99% of all observable stellar scale systems, 
as will be discussed in Section 3. Whether a similar degree of stratification 
occurs within the galactic scale cannot be determined at present due to 
uncertainty in galactic mass estimates and limitations related to the available 
sample of  galaxies (see point 5 below). Therefore the degree of stratification 
characterizing the cosmological hierarchy is rather remarkable and worthy 
of some reflection. From a cosmological perspective the observed portion 



Self-Similar Cosmological Model 675 

of  nature is, to a rough first approximation, comprised of galaxies which, 
when looked at "microscopically," are composed of  (0.1-0.8)M| dwarf 
stars which, when looked at "microscopically," are composed of hydrogen 
and helium. All of the other known classes of  objects, most of which populate 
interscale levels, are very minor components of the cosmological hierarchy 
in the sense that when you add up the mass incorporated in any of  these 
classes and compare it to the total observed mass of the cosmos, the resulting 
percentage is always less than 15%, and usually infinitesimal. 

4. If  it is assumed that the hierarchy has uppermost and lowermost 
levels, then this is a purely theoretical assumption. Historically, whenever 
observational capabilities have been significantly improved, new levels of 
the cosmological hierarchy have been revealed. Currently the putative 
bounds of  nature's hierarchy are again tellingly close to the largest and 
smallest size scales that can be adequately observed, and it would appear 
to be unwise to regard the matter as being closed. The safest bet is that new 
levels of nature's hierarchy remain to be discovered. 

5. At face value it appears that the degree of stratification might 
decrease above the galactic scale, and that the cosmological hierarchy is 
asymmetric, since the atomic and stellar scales are separated by about 51 
orders of  magnitude in mass, whereas the stellar and galactic scales appear 
to be separated by only about 7 orders of magnitude in mass. With regard 
to the stratification question, the sample of observable galaxies is relatively 
small, about 10 H galaxies as compared with about 1023 stellar objects and 
about 1080 subatomic particles. Moreover, one must take into account the 
exceedingly small galactic scale "sampling ratio," defined as the ratio of 
the radius of the observable portion of the universe to the average radius 
of  the systems of a particular scale. The galactic scale sampling ratio is a 
paltry 105 as compared to 1017 for the equivalent stellar scale ratio and an 
awesome 104~ for the equivalent atomic scale ratio. Therefore, it is possible 
that only a tiny sampling of the objects and phenomena occurring on size 
scales at and above the galactic scale is currently available for scrutiny and 
this circumstance is a serious hindrance to an accurate evaluation of the 
actual stratification above the galactic scale. Concerning the issue of hierar- 
chical asymmetry, the SSCM proposes that the cosmological hierarchy is 
symmetric in all respects and empirical tests presented in Section 3 seem 
to support the symmetry hypothesis. This controversial issue has been 
discussed previously (Oldershaw, 1986a, d) and will be given further atten- 
tion in the sequel to this paper (Oldershaw, 1989c). 

2.3. Discrete Self-Similarity 

Given the highly stratified organization of the observable portion of 
the cosmological hierarchy, it seemed natural to compare atomic, stellar, 
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and galactic scale systems with regard to similarities and /o r  dissimilarities. 
Taking into account the huge differences in spatiotemporal scale which tend 
to obscure inherent similarities to a degree that is often seriously underesti- 
mated, I found that there was a considerable potential for physically 
meaningful analogies among atomic, stellar, and galactic scale systems. Let 
us consider several general examples that suggest the possibility of interesting 
parallels between the physics operating on different scales. 

1. In the most general terms, typical systems from all three scales 
involve distinct objects orbiting one another under the influence of attractive 
(usually proportional to 1/r 2) "forces," e.g., atoms, the solar system, and 
small galactic groups. 

2. Relatively large-scale and highly collimated jets of matter, often in 
a back-to-back configuration, are observed in both stellar and galactic scale 
systems. The potential for meaningful physical analogies between these jet 
phenomena has long been advocated by astrophysicists (Geldzahler et al., 
1981; Geldzahler and Fomalont, 1986). 

3. Likewise, astrophysicists have noted that in some ways, such as their 
enormous densities, neutron stars are like stellar scale counterparts to 
nuclear objects on the atomic scale. Moreover, atomic scale objects can 
range in size from compact nucleons ( r~10-1~cm)  to relatively huge 
Rydberg atoms that are a billion times larger (up to r ~ 10 -4 cm). Similarly, 
stellar scale objects have a size range of  about a billion, from compact 
neutron stars (r < 10 6 cm) to stellar systems with radii of -< 1015 cm. 

4. Binary spiral galaxy systems tend to avoid having parallel spins 
(Helou, 1984) and this phenomenon is also common to atomic scale systems. 
Additionally, Tifft (1982) has presented data that are suggestive of quantiz- 
ation in the orbital motions of binary galaxies. 

5. As will be discussed in more detail in Section 3, both atomic and 
stellar scale systems tend to have relationships between their angular 
momenta (J) and masses (M) of the form J = k M  2, where k is a constant. 
Systems on both scales also tend to have relationships between their mag- 
netic dipole moments (~) and angular momenta of  the form/z  = A J, where 
A is a constant. 

6. The remarkable potential for analogies between the solar system 
and an atom in a highly excited state (Rydberg atom) has been known for 
some time (Metcalf, 1980); in general the morphologies, kinematics, and 
dynamics of  Rydberg atoms and their stellar scale analogs are intriguingly 
similar (Oldershaw, 1982, 1986a, 1987b). For example, in both cases their 
radii and oscillation periods are related by laws of the form of  Kepler's 
third law, p 2 ~  KR 3, where K is a constant (Oldershaw, 1989b). 

Potential analogies such as the six listed above, and others discussed 
in the SSCM references cited above, emboldened me to consider the 
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speculative hypothesis that atomic, stellar, and galactic scale systems might 
be rigorously self-similar, i.e., that specific systems on a given cosmological 
scale have specific analogs on all other cosmological scales, and that the 
properties of analogs from different scales are quantitatively related by 
simple scale transformation equations. 

The derivation of a set of self-similar scale transformation equations, 
which can relate corresponding length, time, and mass values for analog 
systems on different scales, was perhaps the most important step toward 
quantitative testing of the cosmological self-similarity hypothesis, since 
these equations would allow one to identify analogs on different scales, to 
assess quantitatively their self-similarity, and to make definitive predictions. 
From Mandelbrot's (1982) basic discussion of self-similarity, a little physics 
(e.g., velocities should be scale invariant), and a knowledge of the above- 
mentioned general properties of the cosmological hierarchy, one can infer 
that the simplest scaling equations for a highly stratified self-similar 
hierarchy would be 

RN = AR/v-1 (1) 

TN = ATN-1 (2) 

and 
M N = A~ (3) 

where R, T, and M are length, time, and mass values pertaining to analog 
systems on neighboring cosmological scales N and N - 1 ,  and where A 
and D are scaling constants that must, for the present, be determined 
empirically. The values of A and D are found to be approximately 5.2 • 1017 

and 3.174, respectively, and the methods by which these values were arrived 
at are discussed in Oldershaw (1986a) and in the sequel (Oldershaw, 1989c) 
to this paper. In general, these methods involve identifying a pair of putative 
analogs for which there are reasonably accurate mass and radius estimates 
and for which the analogy seems dependable. Ratios of analogous mass 
and radius measurements then yield A and D, since RN/RN_~ = A  and 
MN/MN-1 = A ~ The analog pair that was initially used consisted of the 
solar system, for which accurate data are available, and a very highly excited 
Rydberg atom (n = 168), an atomic scale system whose basic properties are 
both quantifiable and strongly analogous to those of the solar system. The 
fact that A and D are single valued rather than multivalued or continuous 
reflects the fact that according to the SSCM, nature's hierarchy is modeled 
as having discrete and symmetric stratification. 

2.4. Summary of the Basic Model 

The SSCM views nature as a highly stratified, nested, and possibly 
unbounded hierarchy of systems with atomic, stellar, and galactic scale 
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systems comprising a discrete, symmetric framework for the observable 
portion of the entire quasicontinuous hierarchy. It is further hypothesized 
that the hierarchy is rigorously self-similar such that radii, periods, masses, 
and in fact any corresponding parameters (Oldershaw, 1986a-e, 1987a) 
associated with analog systems on different scales are correlated by the very 
simple scale transformations defined in equations (1)-(3). Given the cur- 
rently accepted theoretical models of atomic, stellar, and galactic systems, 
one might be highly inclined to regard the latter hypothesis as being simply 
impossible, i.e., of having no chance of applying to the real world. So much 
more surprising, then, wilt be the results presented below of actual empirical 
tests of the hypothesis. Nature, rather than human theoretical constructs, 
should be the template upon which we decide the merits or shortcomings 
of a scientific hypothesis. 

3. EMPIRICAL TESTS OF THE SELF-SIMILAR 
COSMOLOGICAL MODEL 

3.1. Introductory Notes 

Table I presents the results of 20 retrodictive falsification tests of the 
SSCM. As opposed to definitive predictions (Oldershaw, 1988), which 
predict unexpected phenomena or the results of empirical experiments 
before they are known, retrodictive falsification tests determine a theory's 
ability to "retrodict" previously known data, i.e., they test a theory's con- 
sistency with observations. Therefore, retrodictive falsification tests are 
inherently less stringent than are tests involving definitive predictions. 
However, to the extent that a theory can pass a large and diverse array of 
retrodictive falsification tests, our confidence in the theory as a good approxi- 
mation to natural phenomena is commensurately increased. The final three 
tests listed in Table I come reasonably close to being classified as true 
predictions, since they involve relationships that were not thoroughly 
characterized prior to the tests; several predictions of the SSCM that 
unquestionably meet the criteria for definitive predictions have been presen- 
ted before (Oldershaw 1986a, d, 1987a) and will be discussed further in a 
forthcoming paper (Oldershaw, 1989c). 

Below I will review each test and its results, referencing previous 
discussions of the test and identifying new data that are applicable. Since 
all measurements involve uncertainties, the reference, "predicted," and 
empirical values listed in Table I are estimates and each should be thought 
of as being preceded by an "approximately equals" symbol. Relevant sources 
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and degrees of uncertainty are discussed in the cited references and in this 
paper. 

An important caveat, already mentioned in Section 2, is that nature 
does not present us with equivalent samples of atomic, stellar, and galactic 
scale systems. In terms of  numbers of systems and "sampling ratios" (see 
point 5 of Section 2.2), the values for the atomic, stellar, and galactic scales 
are about 10 s~ 1023, and 1011, and 104~ 1017, and 105, respectively. To put 
this into bold perspective, what we observe of the galactic scale (Oldershaw, 
1986d) is analogous to studying the atomic scale on the basis of observing 
a mere 1011 subatomic particles crammed into a volume roughly comparable 
to that of a single hydrogen atom. This sample would woefully underrep- 
resent the richness of atomic scale phenomena, and therefore we must bear 
in mind that the available galactic scale sample is similarly limited. The 
situation is quite a bit better on the stellar scale, but the caveat against 
assuming equivalent samples is still very important when making stellar- 
atomic comparisons. 

The empirical tests listed in Table I usually have the following format: 
a reference parameter that has been measured with reasonable accuracy is 
identified for a class of systems on a given scale, this value is then transfor- 
med according equations (1)-(3) in order to yield a "predicted" counterpart 
value for the analogous class of systems on a different scale, and finally the 
"predicted" value is compared with empirical measurements made on the 
relevant class of analog systems. Usually atomic scale systems are chosen 
as the source of reference parameters because our empirical measurements 
of  atomic scale parameters are in general vastly superior to our quantification 
of stellar or galactic scale parameters. 

3.2. Discussion of Individual Tests 

1, 2. Since these two tests are intimately related, it will be convenient 
to discuss them together. It has been firmly established (Trimble, 1975) that 
the measured abundances (by numbers rather than by mass) of hydrogen 
and helium are remarkably constant over a wide variety of cosmologically 
representative samples: the sun's outer layers, the interstellar medium, 
meteorites, distant stars, cosmic rays, and other galaxies. Hydrogen appears 
to account for 90:i:2% of all atomic species, helium appears to make up 
9 + 2% of  all atomic species, and elements heavier than helium only con- 
tribute about 1% to the total. Given these atomic scale abundance values, 
the SSCM predicts that comparably representative samples of large numbers 
of  stellar scale systems will reveal that stellar scale hydrogen and helium 
analogs account for approximately 90% and 9% of the stellar scale sample, 
respectively. There is a technical difficulty with a straightforward application 
of this test, but fortunately there is a way to circumvent the problem. The 
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atomic H and He abundances refer to total H and total He; this means 
that atoms in neutral, partially ionized, and fully ionized states are included 
in the atomic scale abundance determinations. According to the SSCM, our 
present observational capabilities are not sufficient to detect reliably stellar 
scale analogs to fully ionized atoms, i.e., bare nuclei, and therefore fully 
ionized species must be excluded from the comparison (Oldershaw, 1986e). 
If, instead of  using total abundances, the abundances of  just neutral  species 
are chosen for comparison, then on the atomic scale the reference parameter 
values are essentally the same as for the total abundances, and on the stellar 
scale all relevant counterparts are observable. By excluding the partially 
ionzed species from the comparison, the serious complication posed by 
widely differing ionization potentials is largely avoided. 

The SSCM proposes (Oldershaw, 1986a) that stars with radii greater 
than about 9 x 109 cm, e.g., main sequence, giant, and supergiant stars, are 
stellar scale counterparts to atoms in excited, but for the most part neutral, 
states. Equations (1)-(3) predict that the stellar scale hydrogen analog has 
a mass of  about 0.15M| and the helium analog has a mass that is four 
times larger, or about 0.6M| As anticipated by the SSCM, recent data 
(Lupton et al., 1987; Low, 1985) show a distinct abundance peak at about 
0.62M| and a much larger peak that falls somewhere between 0.1Mo and 
0.2M| Since there is a considerable amount of uncertainty involved in 
estimating stellar masses [note the broadness of the abundance peaks of 
Lupton et al. (1987)], the stellar scale abundances of H and He analogs 
will be defined here as the abundances of stars with masses estimated to 
be in the ranges 0.1M| to 0.4Mo and 0.45M| to 0.75M| respectively. 
These mass ranges correspond quite well to the estimated mass ranges of 
M dwarf and K dwarf stars, and therefore the SSCM predicts that the 
abundances of M dwarf and K dwarf stars should be about 90% and 9%, 
respectively. Quantitative determinations of  these stellar abundances are 
exceedingly hard to find in the literature, but Wood (1966) has made a 
comprehensive attempt and for his most reliable sample of galaxies the M 
dwarf abundance ranges from 81% to 95% with an average of 89%, While 
the K dwarf abundance ranges from 6% to 18% with an average value of 
10%. The average values are quite close to the predicted values. 

3. Since M dwarf stars are identified with stellar scale analogs to 
hydrogen in neutral but usually excited states, one can take the ground-state 
radius for H, scale it according to equation (1), and arrive at a SSCM 
prediction for the lower limit radius of an M dwarf star. The only difficulty 
here is that neither an atom nor a star has a distinct boundary at a fixed 
radius, but rather both have somewhat ephemeral boundaries. The radius 
encompassing 90% of the electronic charge distribution was chosen 
(Oldershaw, 1986a) as an appropriate estimate for the ground-state radus 
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of H, and the consequent prediction for the lower limit radii of M dwarf 
stars (8.3 • 109 cm) was found to be in good agreement with observational 
estimates of  approximately 8.7 • 109 cm. 

4. Their masses, abundances, and probable origins in planetary nebulae 
all serve to identify (Oldershaw, 1986a, c) the overwhelming majority of 
white dwarf stars as stellar scale analogs to He + ions in their ground states. 
Therefore the estimated radius for a ground-state He + ion (roughly 0.4ao, 
where ao is the Bohr radius) can be scaled according to equation (1) to 
yield a predicted average radius for white dwarf stars. The resulting predic- 
tion of roughly 1.1 • 109 cm is found to be in reasonable agreement with 
the observationally estimated average radius (Greenstein, 1985) of 0.9 x 
1 0  9 c m  for white dwarf stars, given the uncertainties associated with the 
latter value. Parenthetically, it has been noted (Oldershaw, 1982) that the 
morphologies of the structures being ejected in planetary nebula systems, 
the cores of  which are interpreted as predominantly He + analogs, are 
intriguingly similar to the morphologies of electronic wave functions in 
atoms. 

5. Although nearly all white dwarf stars have been identified as He + 
analogs, with masses of approximately 0.45M| (see test 8 below) and 
0.60M| very small numbers of stellar scale analogs to more massive ions 
are expected to be found in this class of objects. It should be clarified that 
according to the SSCM the class of white dwarf stars is analogous to the 
class of highly (but not fully) ionized atomic scale ions with remaining 
electrons populating very low energy levels. Therefore, if one scales the 
lower limit radius for atomic ions with masses greater than four atomic 
mass units according to equation (1), then one should arrive at an SSCM 
prediction for the lower limit radius for a white dwarf star (Oldershaw, 
1986a). Ionic radii (Weast, 1971-1972) for almost fully ionized ions more 
massive than He have a lower limit value of roughly 0.08ao, where ao is 
the Bohr radius, and singly ionized ions have a lower limit radius of about 
0.22ao. It is not entirely clear which lower limit represents the better 
reference parameter for this test, and so we will only expect that the observed 
lower limit radius for white dwarf stars (or better, for those whose radii 
have been estimated so far) will be in the range (A)(0.08ao) to (A)(0.22ao), 
or 2.2x 108 cm to 6.1 • 10 s cm. This is found to be the case; the observed 
lower limit is about 5.5 • 108 cm (Greenstein, 1985). 

6. As noted above, the SSCM identifies main sequence, giant, and 
supergiant stars as stellar scale analogs to excited, but primarily neutral, 
atoms. The latter have a large range of radii extending from approximately 
3ao for the ground state of  H to an approximate radius of 12,100ao for the 
largest Rydberg atoms that are commonly observed (Percival, 1980). A 
coarse but useful test of  the SSCM can be achieved by using equation (1) 
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to scale the limits of this range up to stellar scale values, and to inquire 
whether this predicted range corresponds to the observed radius range for 
"normal" stars. Results of this test are in good agreement with expectations 
of the SSCM, since the lower limit radius for M dwarf stars is roughly 3Ao, 
where Ao is the stellar scale equivalent to the Bohr radius, and supergiant 
stars have observed radii up to roughly 12,140A0 (de Vaucouleurs, 1970). 

7. Having determined that the stellar scale equivalent to the mass of 
the hydrogen atom is approximately 0.15M| (Oldershaw, 1986a), the SSCM 
predicts that the stellar scale analogs to helium, i.e., K dwarfs and most 
white dwarfs, will be about four times more massive, or 0.60M| Observa- 
tional results confirm that 0.6M| is an excellent estimate for the average 
mass of K dwarfs (Lupton et ai., 1987), and the distribution of masses for 
white dwarf stars is a surprisingly narrow peak centered on about 0.6Mo 
(Schoenberner, 1981; Mallik, 1985). The nuclei of planetary nebulae, which 
are also identified as He + analogs and precursors of white dwarf stars, have 
a remarkably sharp mass distribution centered on 0.58M| (Schoenberner, 
1981). The sequel (Oldershaw, 1989c) to this paper will contain a discussion 
of the SSCM prediction that the actual distribution of stellar masses is 
much more discrete than is inferred at present; the very sharp mass distribu- 
tion for the nuclei of planetary nebulae is encouraging evidence along these 
lines. 

8. If white dwarf stars are predominantly analogs to helium ions, then 
they must be primarily analogs to 4He+ ions, which are by far the most 
common isotope of helium. However, one would expect very small numbers 
of 3He + analogs to be included in the present sample of white dwarf 
stars, and therefore one would predict that the lower limit mass for white 
dwarf stars is approximately (3/4)(0.58M| 0.44MG. Two observational 
estimates (Mallik, 1985; Greenstein, 1985) of this parameter are 0.45M| 
and 0.44Mo. 

9. Using equations (1) and (3), one may calculate (Oldershaw, 1986a) 
that the mass and radius of the stellar scale analog to the proton are 
approximately 0.145M| and 0.42 x 105 cm, respectively. It is immediately 
noticed that the radius for the stellar scale proton analog is very close to 
the Schwarschild radius (0.428 x 105 cm) for a stellar object with a mass 
equal to 0.145M| According to the SSCM, therefore, the radius of the 
proton should be equal to the Schwarschild radius for an object with a 
mass equal to 1.67 x 10 -24 g, if the "constants" in the Schwarschild radius 
equation 

Rs = 2 G N M /  c 2 (4) 

are scaled to their proper atomic scale values (Oldershaw, 1986a, d ,e) .  The 
value for the velocity of light c is invariant with respect to scale transforma- 
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tions, but the Newtonian gravitational constant G has dimensions L3/M T 2 
and therefore according to equations (1)-(3) the atomic scale value G_~ is 
A 2A74 times larger than the stellar scale value Go. Solving equation (4) with 
M = 1.67 x 10 -24 g and G _  1 = (A2174)(6.68 • 10 -8 cm3/g sec 2) gives a predic- 
ted radius of  0.81 • 10 -13 cm; the empirically estimated radius for the charge 
distribution of the proton (Bethe and Salpeter, 1957) is approximately 
0 . 8  • 10 -13 cm. 

10, 11. These two tests have been presented in detail before (Oldershaw, 
1986b) and here I will only outline the rationale for the tests and repeat 
the results. It has been observed that many stellar scale systems have a 
relationship between their masses M and angular momenta J of the form 
J = KsM 2, where K~ is a constant with dimensions L2/M T. Similarly, it 
has been observed that families of atomic scale systems obey relationships 
of the form J = KaM:. According to the scaling rules of the SSCM, the 
logarithm of  Ks/Ka should have a value of  approximately -38.51, and this 
is in good agreement with the rough empirical estimate of -38.41 (+3.50). 
Likewise, both stellar scale and atomic scale systems tend to have a relation- 
ship between their magnetic dipole moments /z  and angular momenta J of 
the form /z = AJ. The scaling rules of  the SSCM lead to the expectation 
that the logarithm of hs/A~ should be about -19.31, which can be compared 
with the empirical estimate of  -20.36 (+2.43). Because of the very large 
error bars on the empirical values for Ks/K,, and As/Aa, these tests only 
show that the SSCM predictions for Ks/Ka and A J h a  are "in the right 
ballpark." Perhaps in the future improved empirical constraints will permit 
more stringent versions of  these tests. 

12. A classical spin period for a typical atomic scale nucleus is esti- 
mated to be about 5 • 10 -20 sec (Oldershaw, 1986d). Since the SSCM iden- 
tifies neutron stars as stellar scale analogs to atomic nuclei, equation (2) 
can be used to scale up the nuclear spin period of 5 • 10 -2~ sec to an expected 
value of approximately 0.03 sec for the spin period of a typical neutron 
star. To date, the observed range of spin periods for pulsars is 0.002 sec to 
about 3.0 sec, and therefore the predicted spin period does fall within the 
empirical range for neutron stars. On the other hand, it should be mentioned 
that pulsar spin periods in the range 0.1 to 1.0 sec are far more common in 
present samples than those below 0.1 sec. An intriguing phenomenon that 
both atomic nuclei and pulsars share is that of  abrupt "glitches" (Stephens, 
1985) wherein the spin frequency of the system seemingly instantaneously 
goes from regular decrease to a significantly higher value and then resumes 
a slow decrease from the higher frequency. The observed (Lyne, 1987) 
pulsar "glitches" have so far  involved only very small frequency jumps 
(Af/f<- 10 -6) as compared with the very large "glitches" (h f / f  on the order 
of  10 -~) seen in atomic nuclei, but the analogy is an interesting one and 
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perhaps comparably large pulsar "glitches" will be observed in the future, 
To date, only 14 "glitches" in 7 pulsars have been observed, but statistics 
indicate that they should be a very common phenomenon. 

13. If equations (1)-(3) do relate self-similar phenomena on different 
scales of the cosmological hierarchy, then the high-velocity (average value 
->400 km/sec) random motions of galaxies unambiguously require that their 
analogs on the atomic scale are atomic nuclei under fully ionized plasma 
conditions (Oldershaw, 1986d). Therefore, if the range of radii for atomic 
nuclei, which is about 0.8 x 10 -13 to 8.3 • 10 -13 cm, is scaled up to galactic 
scale values according to equation (1), i.e., multiplied by A 2, then the 
resulting range of about 2.2 x 1022 to 2.2 x 1023 cm should compare favorably 
with the empirically estimated range for the radii of galaxies. There is a 
significant amount of uncertainty in galactic radius estimates, primarily 
because the Hubble constant is uncertain by a factor of 2 and the exact 
extent of dark matter haloes of galaxies is often difficult to estimate. 
However, the smallest galaxy for which the dark matter halo has been taken 
into account (Kormendy, 1985) has a radius of ->0.9 x 1022 cm and the 
largest galaxies (Saslaw, 1985) have radii of roughly 3.1• 1022 cm. The 
agreement between the predicted and the empirically estimated radius ranges 
is quite good considering the present observational uncertainties, and a 
more exact correspondence is a viable possibility. Both galaxies and atomic 
nuclei have shapes that are well represented by McClaurin spheroids and 
Jacobi ellipsoids, including prolate and triaxial shapes (Oldershaw, 1986d). 

14. In test 12 a typical spin period for an atomic nucleus and the range 
of spin periods for pulsars were shown to be correlated in a manner that 
was consistent with the SSCM predictions. A further SSCM prediction is 
that multiplying the atomic scale spin period of about 5 • 10 -20 sec by A:, 
in accordance with equation (2), should yield a typical galactic spin period. 
The numerical value is about 4.3 x 108 years, and this spin period is approxi- 
mately equal to a rough estimate (Mihalas and Binney, 1981) of the spin 
period of 4.4 (+2.2) x 108 years for our galaxy, which is in all respects a 
typical galaxy. 

15, As mentioned above, the SSCM unambiguously identifies atomic 
scale nuclei and stellar scale neutron stars as self-similar analogs. Therefore 
the range of magnetic dipole moments t~, with dimensions of M 1/2 L 3/2, for 
atomic nuclei should be related to the/z range for neutron stars by a scaling 
factor of (A~ 3/2) = 4.9 x 1054. The range of/~ values for cosmologically 
abundant atomic nuclei (Oldershaw, 1987a) is 4.5• -25 to 1.8x 
10 -23 Gcm 3, and so the predicted range for neutron stars is roughly 1030.34 
to 1031'94 G cm 3. The estimated range of/z values for neutron stars is roughly 
1030.3 t o  10313 G c m  3 (Kundt, 1986), which is in good agreement with the 
predicted range, given the theoretical and empirical uncertainties involved 
in this test. 
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16. Since the majority of white dwarf stars have been identified as 
self-similar analogs to He + ions, and since white dwarfs appear to have 
preferred oscillation periods (Wesemael et al., 1986) of  approximately 250 
(+100) and 850 (+100) sec, it can be predicted via equation (2) that He + 
ions should have major transition periods of about (250sec)(A-1)= 
4.8 x 10 -16 sec and (850 s e c ) ( A  -1 )  = 1.6 x 10 -~5 sec. In fact, these predicted 
periods are in good agreement with two of the three major transiton periods 
of  He + ions: 5.5 • 10 -16 and 1.6 x 10 -15 sec (Oldershaw, 1989a). 

17. Since neutron stars have been identified as self-similar counterparts 
to atomic scale nuclei (Oldershaw, 1986a), the SSCM predicts that the 
ranges of  vibrational periods for these two classes of  systems Should be 
correlated by equation (2). Vibration periods in atomic nuclei range from 
about 1.3 x 10 -22 to 7.8 x 10 -21 sec, and therefore the anticipated range of 
vibration periods for neutron stars should be approximately 6.8 x 10 -s to 
4.1 x 10 -3 sec (Oldershaw, 1989a). This predicted range is in good agreement 
with the empirically determined range of  10.0 x 10 -s to 1.2 x 10 -3 sec con- 
sidering that the latter range is based on a very small sample size (Carroll 
et al., 1986). 

18, 19. The SSCM identifies the majority of main sequence, giant, and 
supergiant stars as stellar scale analogs to neutral atoms in highly excited 
Rydberg states (Oldershaw, 1986a, 1987b). It also predicts that any well- 
defined physical phenomenon observed on either the atomic or stellar scale 
will have an analogous counterpart on the other scale. When Rydberg atoms 
undergo transitions to lower energy states they oscillate with periods p that 
are related to the average radii r in the following manner (Percival, 1980): 

p2 ~. klr3 (for l ~  n) (5) 

and 

p2 ~ k2r 3 (for I<< n) (6) 

where n is the principal quantum number, l is the azimuthal quantum 
number, kl is a constant equal to (po)2/(ao) 3, and k2 is a constant equal to 
(po)2/(2ao) 3. The parameter po is the minimum transition period for hydro- 
gen and ao is the Bohr radius. From the fact that Rydberg atoms obey 
approximate relationships of the form of Kepler's third law, i.e., p2 ~ k~r 3, 
it can be predicted that variable stars with radii ->IR| which have been 
identified as stellar scale analogs to Rydberg atoms undergoing transitions 
to lower energy states (Oldershaw, 1987b), will have periods P and radii 
R that obey approximate relationships of the form p 2 ~  KiR 3, where the 
Ki represent analogs to the ki. It has been demonstrated (Oldershaw, 1989b) 
that a wide variety of  variable stars, including delta Scuti, RR Lyrae, beta 
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Cepheid, classical Cepheid, and supergiant variables, do indeed obey 
period-radius relations of the predicted form. Moreover, it has been shown 
that the atomic scale constants kl and k2 are quantitatively related to their 
stellar scale counterparts K1 and K2 by the self-similar scaling rules 
embodied in equations (1)-(3). A third P - R  relationship with a K3 value 
that is closely related to K1 and K2 has been identified for variable stars 
and has led to the prediction that an analogous p-r  relation will be found 
for a subset of Rydberg atoms (Oldershaw, 1989b). 

20. This final test of the SSCM requires more discussion than its 
predecessors because it has not been published previously. The proposed 
analogy between variable stars and Rydberg atoms undergoing transitions 
leads to the expectation that the periods of variable stars have quantized 
values, as is the case with their atomic scale analogs. This expectation will 
be explored below, but several important caveats must be mentioned first. 
When atomic scale quantization is observed, one of two general strategies 
has been employed: strategy A is to observe a perfectly homogeneous sample 
of atoms under rigorously controlled ambient conditions, and when strategy 
A is not feasible because one cannot regulate the homogeneity of the atomic 
species and/or  the ambient physical conditions, then strategy B is to sample 
enormous numbers (---1020 ) of atoms in the hope that discrete peaks will 
rise above the nearly continuous background. On the stellar scale one is 
faced with the following observational circumstances. 

(a) Variable stars represent a heterogeneous mixture of stellar scale 
counterparts to atoms and ions. 

(b) Values of n for individual stars can range from 1 to at least 100. 
(c) For each value of n there are n different energy levels due to orbital 

angular momentum considerations, i.e., l can vary from 0 to n - 1 
for each value of n. 

(d) If  spin considerations are included, then the above-mentioned 
energy levels are further split into an even larger set of levels. 

(e) Since the energy levels of Rydberg atoms can be significantly shifted 
by ambient electric and magnetic fields, the SSCM asserts that an 
analogous shifting of energy levels can also occur in the case of 
their stellar scale counterparts. Variable stars from different loca- 
tions within our galaxy, i.e., near the nucleus, in the outer halo, 
in the spiral arms, or in globular clusters, would therefore be 
expected to have period distributions that are influenced by 
differing galactic scale electromagnetic environments. 

If  careful thought is given to these five considerations, which would 
serve to generate a dense "forest" of transition periods for Rydberg atoms 
or their analogs, then it is clear that expecting to find textbook-style evidence 
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for quantized periods among variable stars, based on a maximum sample 
size on the order of 104 periods, is essentially ruled out at present. Under 
the existing observational circumstances even less overt evidence for quan- 
tization in atoms or variable stars would still be very difficult to obtain, 
since strategy B is precluded by having only a tiny sample of systems and 
since strategy A is hampered by our inability to manipulate the sample or 
the ambient physical conditions that affect the sample. However, all is not 
lost. Granted that blatant examples of quantization are not to be expected, 
one might still hope to observe less overt evidence of quantization in the 
following manner. Since the sample size is invariably going to be small, the 
best strategy is to identify as homogeneous a subsample of variable stars 
as possible, with the hope of minimizing the number of different species, 
the spread of n and I values, and the influence of differing ambient physical 
conditions. 

RR Lyrae stars constitute perhaps the best candidate for a class of 
variable stars that meets the desired criteria. Their masses are found to 
cluster around 0.6M| (Stothers, 1981) and therefore the SSCM unam- 
biguously identifies them as primarily helium analogs. The overwelming 
majority of their radii fall within the range of 4R| to 7R| (Stothers, 1981), 
and from this fact the SSCM identifies (Oldershaw, 1987b) the range of n 
values for RR Lyrae variables as n = 7 to n = 9. Also, their position on a 
period-radius graph shows that they represent the l<< n case (Oldershaw, 
1989b); here we will assume that l <- 2. Therefore, if reasonably large samples 
of RR Lyrae variables from reasonably homogeneous galactic environments 
are analyzed in terms of relative frequencies of oscillation periods, then the 
SSCM anticipates that evidence for discrete, preferred periods will be 
present, though the statistical significance might be low. The range of the 
period distribution and the preferred periods for the RR Lyrae stars should 
be correlated with corresponding He transition periods in a manner con- 
sistent with equation (2). 

I have investigated the period distributions for several RR Lyrae sub- 
samples taken from the General Catalogue of Variable Stars [the Third 
Edition and its Supplements] (Kukarkin et al., 1969-1970), and two useful 
empirical findings have resulted from these investigations. First, about 99% 
of the RR Lyrae stars have periods in the range 0.2-0.8 day. Second, there 
tend to be recurrent peaks in the subsample period distributions at periods 
of 0.32+0.01, 0.37• 0.40+0.01, 0.44+0.01, 0.47• and 0.52+0.01 
day. The strengths of these preferred periods varies from subsample to 
subsample and their position is sometimes shifted by • day, but their 
recurrence in different subsamples lends credibility to the hypothesis that 
RR Lyrae variables have preferred periods. As an example, Table II presents 
the distribution of periods for a subsample of 672 RR Lyrae variables that 
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Table II. 

Oldershaw 

Distribution of Periods for a Sample of 672 RR Lyrae Variables and Relevant 
Scaled Transition Periods for H, He, and Li Atoms 

RR Lyrae period distribution Scaled atomic periods 

AP (days) N Ap (days) N H He Li 

0.150-0.159 1 0.500-0.509 15 0.383 0.276 
0.160-0.169 0 0.510-0.519 32 0.558 0.287 
0.170-0.179 2 0.520-0.529 -*35 0.323 
0.180-0.189 1 0.530-0.539 35 0.326 
0.190-0.199 0 0.540-0.549 30 0.354 
0.200-0.209 1 0.550-0.559 23 0.378 
0.210-0.219 0 0.560-0.569 27 0.389 
0.220-0.229 2 0.570-0.579 22 0.404 
0.230-0.239 4 0.580-0.589 18 0.406 
0.240-0.249 2 0.590-0.599 13 0.424 
0.250-0.259 2 0.600-0.609 14 0.432 
0.260-0.269 5 0.610-0.619 9 0.440 
0.270-0.279 5 0.620-0.629 7 0.464 
0.280-0.289 5 0.630-0.639 11 0.474 
0.290-0.299 7 0.640-0.649 10 0.478 
0.300-0.309 4 0.650-0.659 9 0.513 
0.310-0.319 4 0.660-0.669 4 0.518 
0.320-0.329 -* 11 0.670-0.679 0 0.552 
0.330-0.339 10 0.680-0.689 2 0.565 
0.340-0.349 "8 0.690-0.699 6 0.590 
0.350-0.359 8 0.700-0.709 3 0.633 
0.360-0.369 12 0.710-0.719 3 0.645 
0.370-0.379 -.14 0.720-0.729 2 0.681 
0.380-0.389 6 0.730-0.739 0 0.752 
0.390-0.399 5 0.740-0.749 1 
0.400-0.409 - 9 1 6  0.750-0.759 1 
0.410-0.419 4 0.760-0.769 0 
0.420-0.429 7 0.770-0.779 1 
0.430-0.439 16 0.780-0.789 0 
0.440-0.449 - * 2 8  0.790-0.799 1 
0.450-0.459 27 0.800-0.809 2 
0.460-0.469 24 0.810-0.819 0 
0.470-0.479 - * 4 3  0.820-0.829 1 
0.480-0.489 25 0.830-0.839 0 
0.490-0.499 26 0.840-0.849 0 

0.250 
0.256 
0.362 
0.369 
0.378 
0.398 
0.529 
0.543 
0.579 
0.590 
0.798 
0.866 

w e r e  l i s t ed  fo r  t he  Sag i t t a r ius  r e g i o n  in t he  Second Supplement to the Third 
Edition of the General Catalogue of Variable Stars ( K u k a r k i n  et al., 1974). 

Th i s  t yp i ca l  s u b s a m p l e  s h o w s  t h a t  t he  r a n g e  o f  0 .2-0 .8  d a y  i n c l u d e s  a l m o s t  

all o f  t h e  o b s e r v e d  p e r i o d s  a n d  it has  w h a t  a p p e a r  to  be  d i s t i n c t  p e a k s  at  

t h e  six va lue s  l i s ted  a b o v e .  
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Assuming that RR Lyrae variables correspond to the case 7---n-< 9, 
1<-2, and (n2-n~)= 1, one can compare the stellar scale results with the 
corresponding transition period data for He, including singlet and triplet 
systems. For ease of comparison the He periods are scaled up to units of 
"days," i.e., multiplied by a factor of A in accordance with equation (2). 
The scaled He periods are determined by the calculation 

P = ( h / A E ) ( A )  (7) 

where P is the transition period scaled up to "days," AE is the energy level 
separation (Bashkin and Stoner, 1975), A is the scaling constant from 
equations (1)-(3), and h is Planck's constant. The resulting transition period 
data for He are given in Table II. The range of relevant transition periods 
for He is 0.276 to 0.752 "days," which is in reasonable agreement with the 
predicted range of 0.2 to 0.8 "days." And as predicted, the set of 24 transition 
periods for He contains counterparts to each of the six preferred periods 
identified in the RR Lyrae sample. In order to test the uniqueness of the 
Correspondence between the He periods and the preferred RR Lyrae periods, 
the same calculations were undertaken for hydrogen and lithium atoms~ 
and the relevant transition periods for these atoms are also listed in Table 
II. There is no correlation between the H periods and the preferred RR 
Lyrae periods. In the case of Li, three of the preferred RR Lyrae periods, 
including the largest and most discrete peak, have no counterparts among 
the scaled Li transition periods. Thus, the correspondence between the He 
and RR Lyrae periods appears to be unique. 

This first attempt to investigate the possibility of quantization in the 
periods of variable stars represents a very approximate test that involves a 
small sample size and relies on numerous assumptions. Yet the results are 
reasonably encouraging and they suggest the way to achieve more rigorous 
quantization tests in the future (Oldershaw, 1989 b). Such tests would require 
much larger samples of variable stars that have been segregated according 
to galactic location, and they would require highly accurate period, radius, 
and mass data. It would also be interesting to test whether the relative peak 
heights of the preferred periods for variable stars match up with the transi- 
tion probabilities for the corresponding periods of the atomic scale analogs. 

3.3. Implications of the Empirical Tests 

There are only three plausible explanations for the general agreement 
between the predictions and the empirical data in the 20 tests discussed 
above: chance, fudging of various types, or cosmological self-similarity. A 
rough and very conservative calculation of the probability that the agreement 
could have resulted by chance can be made in the following manner. Assume 
that the probability of a chance agreement for each test is ---1/3, i.e., the 
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prediction could be unacceptably high, unacceptably low, or within the 
error bars of  the relevant empirical parameter. Then the maximum probabil- 
ity that the same set of scaling rules could pass 20 such tests by chance is 

�9 (1/3) 20 or one chance in 3,486,784,424 tries, which is to say that chance 
would be an extremely unscientific explanation for the favorable results 
presented in Table I. 

Fudging, or arbitrarily adjusting a theory so that it comes into agreement 
with observational data, has always been and still is (Oldershaw, 1988) a 
standard tool of the theoretician, though one that tends to be used furtively. 
The question to be considered here is whether fudging could account for 
the apparent success of the SSCM and its scale transformation equations. 
If  one could make arbitrary choices with regard to the proposed analog 
pairs, the form of the scaling equations, and /o r  the values of the constants 
appearing in the scaling equations, then could the arbitrarily fudged theory 
pass the 20 falsification tests presented above even though nature was not 
fundamentally self-similar? The author's answer to this question, after 
investigating such matters for over 10 years, is that if self-similarity was not 
a global property of nature, then a fudged theory that could pass these 
particular falsification tests, or equally fundamental  ones, would be hope- 
lessly complicated and  arbitrary. Moreover, as one tried to test the theory 
beyond the data that it was constructed around, it would quickly fail. In 
contrast, the SSCM has very simple conceptual foundations and scaling 
equations, the identifications of analog pairs are always based on two or 
more fundamental properties such as mass, radius, and spin period, and 
nearly half of the tests (numbers 10-12' and 14-20) were conceived and 
conducted after the theoretical foundations of the SSCM, its major analog 
pair identities, the form of the scaling equations, and the values of A and 
D had been submitted for publication (Oldershaw, 1986a). In the absence 
of a convincing demonstration to the contrary, for example, a demonstration 
that ~ an equally simple and successful alternative to the SSCM can be 
arbitrarily constructed, the fudging explanation is scientifically untenable. 
The number, diversity, and fundamental nature of  the quantitative fal- 
sification tests passed by the SSCM strongly support the contention that 
nature manifests discrete cosmological self-similarity and that equations 
(1)-(3) uniquely relate the physical properties of atomic, stellar, and galactic 
scale systems. 

4. CONCLUSIONS 

In this paper the general concepts and the self, similar scale transforma- 
.tion equations of the SSCM have been discussed, and 20 successful tests 
have been presented. The simplicity of this model and its ability to relate 
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quantitatively atomic, stellar, and galactic scale phenomena suggest that a 
new property of nature has been identified: discrete cosmological self- 
similarity. Although the SSCM is still in the early heuristic stage of develop- 
ment, it may be the initial step toward a truly remarkable unification of our 
considerable, but fragmented, physical knowledge. M~or  questions yet to 
be answered concern the exactness of the cosmologica! self-similarity (i.e. , 
is the self-similarity accurate only to a factor of about 2 or is it exact) and 
the number of scales in the cosmological hierarchy (i.e., finite or infinite). 
It has been argued previously that these two questions are interrelated 
(Oldershaw, 1981b); for example, exact self-similarity necessitates an 
infinite hierarchy. An even more fundamental question is: why should nature 
be globally self-similar and rife with examples of  local self-similarity? 

A forthcoming paper (Oldershaw, 1989c) on the SSCM will discuss 
the paradigm in more technical detail. It will also review several definitive 
predictions by which the SSCM can be put to very rigorous tests, and it 
will discuss major unresolved problems that raise doubts about some aspects 
of the model. The review will conclude with a discussion of the diverse 
implications of the SSCM. 
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